Utilties to help build models, both in specific applications such as time series and text analysis, and in general tools..
qeCompare(data,yName,qeFtnList,nReps,opts=NULL,seed=9999)
qeFT(data,yName,qeftn,pars,nCombs,nTst,nXval,showProgress=TRUE)
qeText(data,yName,kTop=50,stopWords=tm::stopwords("english"),
qeName,opts=NULL,holdout=floor(min(1000,0.1*nrow(data))))
qeTS(lag,data,qeName,opts=NULL,holdout=floor(min(1000,0.1*length(data))))
# S3 method for qeText
predict(object,newDocs,...)
# S3 method for qeTS
predict(object,newx,...)
Further arguments.
Object returned by a qe-series function.
New data to be predicted.
Vector of new documents to be predicted.
number of recent values to use in predicting the next.
Name of qe-series predictive function, e.g. 'qeRF'.
Stop lists to use.
Number of parameter combinations.
Number of most-frequent words to use.
Dataframe, training set. Classification case is signaled via labels column being an R factor.
Name of the class labels column.
If not NULL, form a holdout set of the specified size. After fitting to the remaining data, evaluate accuracy on the test set.
Character vector of qe*
function names.
Number of holdout sets to generate.
R list of optional arguments for none, some or all of th
functions in qeFtnList
.
Seed for random number generation.
Quoted string, specifying the name of a qe-series machine learning method.
R list of hyperparameter ranges. See
regtools::fineTuning
.
Number of hyperparameter combinations to run.
See regtools::fineTuning
.
Number of cross-validations to run.
See regtools::fineTuning
.
If TRUE, show results as they arise.
See regtools::fineTuning
.
Norm Matloff
Overviews of the functions:
qeTs
is a tool for time series modeling
qeText
is a tool for textual modeling
qeCompare
facilitates comparison among models
qeFT
does a random grid search for optimal hyperparameter
values
data(mlb1)
# predict Weight in the mlb1 dataset, using qeKNN, with k = 5 and 25,
# with 10 cross-validations
qeFT(mlb1,'Weight','qeKNN',list(k=c(5,25)),nTst=100,nXval=10)
Run the code above in your browser using DataLab